USA.- Microbial proteins, such as fungal biomass produced on low-cost feedstock, have gained significant attention as feed ingredients due to cost effectiveness and long-term sustainability. Fungal process is a low-cost and simple process for animal feed production, as fungi are known to grow extensively on diverse organic feedstocks under optimal conditions. Hawaii produces a large quantity of fruit and food/agri by-products and waste products that may have the potential to be upgraded into protein enriched value-added products. The ongoing CTSA-funded project “Utilization of local agri-processing by-products to produce fungal protein for aquatic feed production” is investigating this potential in products including molasses, cassava, papaya waste, and microbrewery waste.

Norwich, United Kingdom.- Squid, sole, dogfish, herring and cod all feed on baby jellyfish – according to new research from the University of East Anglia and the Centre for Environment, Fisheries and Aquaculture Science (Cefas).

Washington, USA.- Ribbed mussels can remove nitrogen and other excess nutrients from an urban estuary and could help improve water quality in other urban and coastal locations, according to a study in New York City's Bronx River. The findings, published in Environmental Science and Technology, are part of long-term efforts to improve water quality in the Bronx River Estuary.

Germany.- If green algae of the species Chlamydomonas reinhardtii meet Pseudomonas protegens bacteria, their fate is sealed. The bacteria, measuring only some two micrometres, surround the algae, which are around five times larger, and attack them with a deadly toxic cocktail. The algae lose their flagella, which renders them immobile. The green single-celled organisms then become deformed and are no longer able to proliferate. The chemical mechanism underlying this extremely effective attack has now been uncovered by botanists and natural product chemists at Friedrich Schiller University, Jena (FSU) and the Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI).

Kiel, Germany.- Mussels protect themselves against environmental disturbances and enemies through a hard, calcareous shell. Increased ocean acidification makes it difficult for organisms to form their shells. In a study published today, in the international journal Nature Communications, a group of scientists from the Kiel University and GEOMAR Helmholtz Centre for Ocean Research Kiel show that mussel larvae react sensitively to ocean acidification, which leads to reduced calcification rates and shell dissolution.