Rehovot, Israel.- Almost all the wildly varied, colorful fish that populate coral reefs start life as tiny, colorless, tadpole-like larvae. Telling one from the other is nearly impossible – even for experts – and this presents a difficult challenge to those who study the ecology of the reefs. Prof. Rotem Sorek of the Weizmann Institute of Science; Prof. Roi Holzman of the School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University; and Dr Moshe Kiflawi of Ben Gurion University have now produced a way to understand precisely which species of larvae are present in the water around reefs. Their study, which involved genetic “barcoding” of nearly all the fish species in the gulf between Eilat and Aqaba, not only showed which larvae were in the gulf, but how many of each were swimming around, at what time of year and at what depths. This study was recently published in the journal Nature Ecology and Evolution.

Ireland.- SEAFOODTOMORROW is a new, €7m European Union Horizon 2020-funded project that aims to develop innovative sustainable solutions for improving the safety and dietary properties of seafood in Europe. Addressing the challenge to meet the growing market need for safe and sustainable seafood, the project will generate new knowledge to develop commercial solutions for improving the socio-economic and environmental sustainability of the European seafood production and processing industry.

USA.- For centuries, indigenous peoples of the Hawaiian Islands practiced sustainable aquaculture by building walled fishponds in coastal estuaries. Historical records estimate that, in the early 1900s, an extensive network of more than 450 fishponds across the Hawaiian Islands produced upward of 2 million pounds of fish annually and supported large thriving communities. Currently, worldwide aquaculture accounts for almost one-half of fish consumption.

In order to meet the demands for salmon, many salmon farms have developed along the coasts of Scandinavia and Scotland. These operations are governed by strict environmental regulations. Farms are required to determine how their fish production is affecting the marine benthic ecosystem. Therefore, they analyse the presence of so-called bioindicator organisms such as crustaceans and worms on the sea floor. This process is time-consuming and expensive. Researchers at the University of Kaiserslautern together with colleagues from the University of Geneva are developing faster and more efficient methods. They utilize the DNA from microorganisms to characterise changes more precisely that was previously possible. Their studies have been published in the renowned journals Ecological Indicators and Marine Pollution Bulletin.

According to the EU-funded DIVERSIFY project, European aquaculture employs 190 000 people and has a EUR 7 billion ex-farm value. But only 10 % of the seafood eaten by consumers in the bloc is actually generated within the EU. The greater amberjack (Seriola dumerili) is a species that could help boost this percentage given their large size, their fillet yield, the short time to market and suitability for product diversification and development of value-added products.